Mechanism of d-Cycloserine Action: Transport Mutants for d-Alanine, d-Cycloserine, and Glycine1

AUTOR(ES)
RESUMO

The accumulation of d-alanine and the accumulation of glycine in Escherichia coli are related and appear to be separate from the transport of l-alanine. The analysis of four d-cycloserine-resistant mutants provides additional support for this conclusion. The first-step mutant from E. coli K-12 that is resistant to d-cycloserine was characterized by the loss of the high-affinity line segment of the d-alanine-glycine transport system in the Lineweaver-Burk plot. This mutation, which is linked to the met1 locus, also resulted in the loss of the ability to transport d-cycloserine. The second-step mutation that is located 0.5 min from the first-step mutation resulted in the loss of the low-affinity line segment for the d-alanine-glycine transport system. The transport of l-alanine was decreased only 20 to 30% in each of these mutants. A multistep mutant from E. coli W that is 80-fold resistant to d-cycloserine lost >90% of the transport activity for d-alanine and glycine, whereas 75% of the transport activity for l-alanine was retained. E. coli W could utilize either d- or l-alanine as a carbon source, whereas the multistep mutant could only utilize l-alanine. Thus, a functioning transport system for d-alanine and glycine is required for both d-cycloserine action and growth on d-alanine.

Documentos Relacionados