Mechanistic aspects of genome-wide demethylation in the preimplantation mouse embryo.

AUTOR(ES)
RESUMO

Gene-specific methylation patterns in mammals play a role in a variety of biological processes in the embryo and adult tissues. These patterns are established during embryo development by a process that involves genome-wide demethylation in the morula and de novo methylation in the pregastrula. To elucidate the mechanism of demethylation in the early mouse embryo, we have injected mouse zygotes with gene sequences that were methylated in vitro by Hpa II methylase and analyzed the methylation status of specific sites in blastocyst DNA. Because it had been propagated in Escherichia coli, the DNA used for these injections was also methylated at adenine residues in GATC sites. This allowed us to eliminate fully methylated, unintegrated DNA by Dpn I digestion and fully unmethylated, integrated DNA that underwent several rounds of replication by Mbo I digestion. The integrated, originally injected DNA strands were in a hemimethylated state and survived this treatment. The methylation status of Hpa II sites in these molecules was analyzed by Hpa II digestion of the genomic DNA isolated from blastocysts, followed by PCR amplification using appropriate primers. The results demonstrate that demethylation is achieved by an active mechanism and that specific sites in imprinted genes escape demethylation, maintaining a methylated state throughout preimplantation development.

Documentos Relacionados