Microenvironment of respiratory neurons in the in vitro brainstem-spinal cord of neonatal rats.

AUTOR(ES)
RESUMO

1. O2-, K(+)- and pH-sensitive microelectrodes were used to measure extracellular oxygen pressure (PO2), K+ activity (aKo) and pH (pHo) in ventral regions of the medulla oblongata containing respiratory neurons in the in vitro brainstem-spinal cord preparation from 0 to 4-day-old rats. 2. The location of respiratory neurons was mapped by extracellular recordings with conventional microelectrodes, or with the reference barrel of ion-sensitive microelectrodes. The major populations of respiratory neurons were distributed in the ventrolateral reticular formation near the nucleus ambiguus at depths of 300-600 microns. In this area, aKo baseline increased from 3.2 to 3.8 mM whereas steady-state values of PO2 and pHo fell from 120 to 7 mmHg and from 6.9 to 6.7, respectively. 3. During rhythmic inspiratory discharges recorded with suction electrodes from ventral roots of spinal (C3-C5) and cranial (IX, X, XII) nerves, aKo transiently increased by up to 100 microM, and PO2 fell maximally by 0.4 mmHg. During episodes of non-rhythmic neuronal discharge, aKo increased by as much as 0.4 mM and PO2 decreased by about 10 mmHg. In contrast, no variations in pHo could be detected during such activities. 4. Activation of medullary neurons by tetanic electrical stimulation of axonal tracts in the ventrolateral column of the spinal cord at the level of the phrenic motoneuron pool produced aKo elevations of up to 5 mM, decreases of PO2 by up to 50 mmHg, and pHo increases by a maximum of 0.07 pH units. These aKo and PO2 transients were reduced by more than 80% during blockade of synaptic transmission with 5 mM manganese (Mn2+) and completely blocked by 1 microM tetrodotoxin (TTX). 5. The tissue PO2 gradient as well as activity-related decreases of PO2 were completely abolished after block of oxidative cellular metabolism by addition of 2-10 mM cyanide (CN-) to the bathing solution. 6. Inhibition of the Na(+)-K+ pump by addition of 3-50 microM ouabain (3-10 min) caused a reversible increase of aKo by 0.8-3 mM, a delayed recovery of stimulus-induced aKo elevations, and produced a disturbance of the respiratory rhythm. 7. The sensitivity of the respiratory network to oxygen depletion was tested by superfusing the neuraxis with hypoxic solutions gassed with N2 instead of O2 (5-20 min).(ABSTRACT TRUNCATED AT 400 WORDS)

Documentos Relacionados