Migration in depth pre-piling up using the cinematic attributes of the piling up for surface of common reflection / Migração em profundidade pré-empilhamento utilizando os atributos cinemáticos do empilhamento por superfície de reflexão comum

AUTOR(ES)
DATA DE PUBLICAÇÃO

2007

RESUMO

The Common-Reflection-Surface (CRS) stack is a new seismic processing method for simulating zero-offset (ZO) and common-offset (CO) sections. It is based on a second-order hyperbolic paraxial approximation of reflection traveltimes in the vicinity of a central ray. For ZO section simulation the central ray is a normal ray, while for CO section simulation the central ray is a finite-offset ray. In addition to the ZO section, the CRS stack method also provides estimates of wavefield kinematic attributes useful for solving interval velocity inversion, geometrical spreading calculation, Fresnel zone estimate, and also diffraction events simulation. In this work, Its proposed a new strategy to do a pre-stack depth migration by using the CRS derived wavefield kinematic attributes, so-called CRS based pre-stack depth migration (CRS-PSDM) method. The CRS-PSDM method uses the CRS results (ZO section and kinematic attributes) to construct an optimized stack traveltime surface along which the amplitudes of the multi-coverage seismic data are to be summed and the result is put in a point of the migration target zone in depth. In the same sense as in Kirchhoff type pre-stack depth migration (K-PSDM), the CRSPSDM method needs a migration velocity model. Unlike the K-PSDM method, the CRS-PSDM needs only to calculate the zero-offset traveltimes, i.e, along only ray conecting the considered point in depth to a given coincident position of source-receptor at surface. The final result is a zero-offset time-to-depth converted seismic image of reflectors from pre-stack seismic data.

ASSUNTO(S)

migration seismic reflection method wave front constructing elastic waves sismologia crs stacking seismology método de reflexão sísmica geofisica construção de frentes de onda imageamento sísmico ondas elásticas seismic imaging migração empilhamento crs

Documentos Relacionados