Molecular cloning and characterization of prostase, an androgen-regulated serine protease with prostate-restricted expression

AUTOR(ES)
FONTE

The National Academy of Sciences

RESUMO

The identification of genes with selective expression in specific organs or cell types provides an entry point for understanding biological processes that occur uniquely within a particular tissue. Using a subtraction approach designed to identify genes preferentially expressed in specific tissues, we have identified prostase, a human serine protease with prostate-restricted expression. The prostase cDNA encodes a putative 254-aa polypeptide with a conserved serine protease catalytic triad and an amino-terminal pre-propeptide sequence, indicating a potential secretory function. The genomic sequence comprises five exons and four introns and contains multiple copies of a chromosome 19q-specific minisatellite repeat. Northern analysis indicates that prostase mRNA is expressed in hormonally responsive normal and neoplastic prostate epithelial tissues, but not in prostate stromal constituents. Prostase shares 35% amino acid identity with prostate-specific antigen (PSA) and 78% identity with the porcine enamel matrix serine proteinase 1, an enzyme involved in enamel matrix degradation and with a putative role in the disruption of intercellular junctions. Radiation-hybrid-panel mapping localized prostase to chromosome 19q13, a region containing several other serine proteases, including protease M, pancreatic/renal kallikrein hK1, and the prostate-specific kallikreins hK2 and hK3 (PSA). The sequence homology between prostase and other well-characterized serine proteases suggests several potential functional roles for the prostase protein that include the degradation of extracellular matrix and the activation of PSA and other proteases.

Documentos Relacionados