Molecular cloning of cis-acting regulatory alleles of the Bacillus subtilis amyR region by using gene conversion transformation.

AUTOR(ES)
RESUMO

Three cis-acting alleles (gra-10, gra-5, and amyR2) of the Bacillus subtilis amyR promoter locus each cause catabolite repression-resistance of amyE-encoded alpha-amylase synthesis. The gra-10, gra-5, and amyR2 alleles were transferred from the chromosomes of their respective hosts to a plasmid carrying the amyR1-amyE+ gene by the process of gene conversion which is carried out during transformation of competent B. subtilis by plasmid clones carrying homologous DNA. The cloned amyR promoter regions containing the gra-10 and gra-5 mutations were shown to confer catabolite repression-resistance in cis to the synthesis of chloramphenicol acetyltransferase encoded by the cat-86 indicator gene when subcloned into the promoter-probe plasmid pPL603B. Implications concerning both the regulation of amyR utilization and the process of gene conversion in B. subtilis are discussed.

Documentos Relacionados