Multicomplex cellulase-xylanase system of Clostridium papyrosolvens C7.

AUTOR(ES)
RESUMO

The cellulase system of Clostridium papyrosolvens C7 was fractionated by means of ion-exchange chromatography into at least seven high-molecular-weight multiprotein complexes, each with different enzymatic and structural properties. The molecular weights of the complexes, as determined by gel filtration chromatography, ranged from 500,000 to 660,000, and the isoelectric points ranged from 4.40 to 4.85. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the complexes showed that each complex had a distinct polypeptide composition. Avicelase, carboxymethyl cellulase, and xylanase activity profiles differed from protein complex to protein complex. Three of the complexes hydrolyzed crystalline cellulose (Avicel). Activity zymograms of gels (following electrophoresis under mildly denaturing conditions) revealed different carboxymethyl cellulase-active proteins in all complexes but xylanase-active proteins in only two of the complexes. The xylanase specific activity of these two complexes was more than eightfold higher than that of the unfractionated cellulase preparation. A 125,000-M(r) glycoprotein with no apparent enzyme activity was the only polypeptide present in all seven complexes. Experiments involving recombination of samples eluted from the ion-exchange chromatography column indicated that synergistic interactions occurred in the hydrolysis of crystalline cellulose by the cellulase system. We propose that the C. papyrosolvens enzyme system responsible for the hydrolysis of crystalline cellulose and xylan is a multicomplex system comprising at least seven diverse protein complexes.

Documentos Relacionados