Multiple Regulators Control Expression of the Entner-Doudoroff Aldolase (Eda) of Escherichia coli

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

The Escherichia coli eda gene, which encodes the Entner-Doudoroff aldolase, is central to the catabolism of several sugar acids. Here, we show that Eda synthesis is induced by growth on gluconate, glucuronate, or methyl-β-d-glucuronide; phosphate limitation; and carbon starvation. Transcription of eda initiates from three promoters, designated P1, P2, and P4, each of which is responsible for induction under different growth conditions. P1 controls eda induction on gluconate and is regulated by GntR. P2 controls eda induction on glucuronate and galacturonate and is regulated by KdgR. P4 is active under conditions of phosphate starvation and is directly controlled by PhoB. In addition, CsrA activates Eda synthesis, apparently by an indirect mechanism that may be involved in the modest changes in expression level that are associated with carbon starvation. The complex regulation of eda is discussed with respect to its several physiological roles, which apparently accommodate not only sugar acid catabolism but also detoxification of metabolites that could accumulate during starvation-induced stress.

Documentos Relacionados