Murine 12/15-Lipoxygenase Regulates ATP-binding Cassette Transporter G1 Protein Degradation through p38- and JNK2-dependent Pathways*

AUTOR(ES)
FONTE

American Society for Biochemistry and Molecular Biology

RESUMO

12/15-Lipoxygenase (12/15LO) plays a role in the pathogenesis of atherosclerosis and diabetes and has been implicated in low density lipoprotein oxidation. Murine macrophages express high levels of 12/15LO and are key cells involved in the accumulation and efflux of oxidized low density lipoprotein in the arterial wall. During this process, macrophages up-regulate scavenger receptors that regulate lipid uptake, and ATP-binding cassette (ABC) transporters, that regulate lipid efflux. We have previously demonstrated that 12/15LO enhances the turnover and serine phosphorylation of ABCG1. In the current study, we further elucidate the mechanisms by which 12/15LO regulates ABCG1. Proteasomal inhibitors blocked the down-regulation of ABCG1 expression and resulted in accumulation of phosphorylated ABCG1. Macrophages that lack 12/15LO have enhanced transporter expression, reduced ABCG1 phosphorylation, and increased cholesterol efflux. Conversely, macrophages that overexpress 12/15LO have reduced ABCG1 expression, increased transporter phosphorylation, and reduced cholesterol efflux. 12/15LO plays a key role in activating the MAPK pathway. Inhibition of the p38 or JNK pathways with pharmacological inhibitors or dominant negative constructs blocked 12S-hydroxyeicosatetranoic acid-mediated degradation of ABCG1. Moreover, we isolated macrophages from JNK1-, JNK2-, and MKK3-deficient mice to analyze the involvement of specific MAPK pathways. JNK2- and MKK3-, but not JNK1-deficient macrophages were resistant to the down-regulation of ABCG1 protein, reduction in efflux, and increase in serine phosphorylation by 12S-hydroxyeicosatetranoic acid. These findings provide evidence that 12/15LO regulates ABCG1 expression and function through p38- and JNK2-dependent mechanisms, and that targeting these pathways may provide novel approaches for regulating cholesterol homeostasis.

Documentos Relacionados