Mutation of the htrB gene in a virulent Salmonella typhimurium strain by intergeneric transduction: strain construction and phenotypic characterization.

AUTOR(ES)
RESUMO

The htrB gene product of Haemophilus influenzae contributes to the toxicity of the lipooligosaccharide. The htrB gene encodes a 2-keto-3-deoxyoctulosonic acid-dependent acyltransferase which is responsible for myristic acid substitutions at the hydroxy moiety of lipid A beta-hydroxymyristic acid. Mass spectroscopic analysis has demonstrated that lipid A from an H. influenzae htrB mutant is predominantly tetraacyl and similar in structure to lipid IV(A), which has been shown to be nontoxic in animal models. We sought to construct a Salmonella typhimurium htrB mutant in order to investigate the contribution of htrB to virulence in a well-defined murine typhoid model of animal pathogenesis. To this end, an r- m+ galE mutS recD strain of S. typhimurium was constructed (MGS-7) and used in inter- and intrastrain transduction experiments with both coliphage P1 and Salmonella phage P22. The Escherichia coli htrB gene containing a mini-Tn10 insertion was transduced from E. coli MLK217 into S. typhimurium MGS-7 via phage P1 and subsequently via phage P22 into the virulent Salmonella strain SL1344. All S. typhimurium transductants showed phenotypes similar to those described for the E. coli htrB mutant. Mass spectrometric analysis of the crude lipid A fraction from the lipopolysaccharide of the S. typhimurium htrB mutant strain showed that for the dominant hexaacyl form, a lauric acid moiety was lost at one position on the lipid A and a palmitic acid moiety was added at another position; for the less abundant heptaacyl species, the lauric acid was replaced with palmitoleic acid.

Documentos Relacionados