Mutational Scanning and Affinity Cleavage Analysis of UhpA-Binding Sites in the Escherichia coli uhpT Promoter

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

UhpA, a member of the NarL family of response regulators, activates transcription of the Escherichia coli uhpT gene for the sugar phosphate transporter UhpT in response to extracellular glucose-6-phosphate. UhpA binds with different affinities to adjacent regions in the uhpT promoter, termed the strong-binding (S) region from −80 to −50 and the weak-binding (W) region from −50 to −32. Transcription activation by UhpA is stimulated by the catabolite gene activator protein (CAP)-cyclic AMP complex and depends on the C-terminal domains of the RNA polymerase RpoA and RpoD subunits. Because single-base substitutions in the UhpA-binding region had little effect on promoter activity, nucleotide substitutions in successive 4-bp blocks throughout this region were examined for their effects on promoter activation and UhpA binding. Changes in three of four blocks within the W region substantially impaired the ability of UhpA to bind to this region, to drive expression of a uhpT-lacZ reporter, and to support UhpA-dependent in vitro transcription. These W region variant promoters were strongly stimulated by CAP. Changes in several parts of the S region impaired UhpA binding to both the S and W regions and decreased promoter activity in vivo and in vitro. Thus, binding of UhpA to the W region is crucial for UhpA-dependent activation and depends on occupancy of the S region. None of these substitutions eliminated promoter function. The orientation of UhpA-binding sites was assessed by the affinity cleavage method. The iron chelate FeBABE [iron (S)-1-(p-bromoacetamidobenzyl) EDTA] was covalently attached to engineered cysteine residues near the DNA-binding region in UhpA. Hydroxyl radicals generated by the iron chelate attached at position 187 resulted in DNA strand cleavages in two clusters of sites located in the middle of the S and W regions. These results are consistent with the binding of two dimers of UhpA. Each dimer binds to an inverted repeat of monomer-binding sites with the consensus sequence CCTGRR, where R is A or G, and each is separated by 6 bp. It is likely that members of the NarL family bind to dyad targets, in contrast to the binding of OmpR family response regulators to direct-repeat targets.

Documentos Relacionados