Neonatal administration of prolactin antiserum alters the developmental pattern of T- and B-lymphocytes in the thymus and spleen of BALB/c female mice.

AUTOR(ES)
RESUMO

We have evaluated the effect of neonatal administration of mouse prolactin (PRL) antiserum on the developmental expression of T- and B-lymphocytes in the thymus and spleen of female BALB/c mice. Newborn female mice were injected subcutaneously with a 50-microliters aliquot of PRL antiserum or normal rabbit serum on days 1, 2, and 3. On neonatal day 5, the PRL antiserum-treated group had a significantly (P less than 0.05) increased population of cells in the thymus and the spleen that were positive for Thy-1.2 and for L3T4. Increases in Thy-1.2- and L3T4-positive cells in the thymus were detectable also on days 8 and 14 in mice that received the PRL antiserum and in mice injected with bromocriptine, a dopamine agonist that inhibits PRL release from the anterior pituitary. On neonatal days 21, 28, and 32, there were no significant differences in the percentage of cells positive for Thy-1.2, Ly-2 (formerly Lyt-2), or L3T4 antigens in the thymus. However, there were significant increases in the percentage of Thy-1.2- and L3T4-positive spleen cells in the bromocriptine-treated group at all times monitored and in the PRL antiserum-treated group except on day 14. In addition, the percentage of splenocytes that were positive for IgG was significantly increased in the PRL antiserum-treatment group on days 8-28, although not on neonatal day 32. Of tissues known to contain PRL receptors, neonatal administration of PRL antiserum or bromocriptine resulted in a significant alteration in the wet weight of spleen and liver, with no significant effect in thymus, heart, and kidney. Pituitary implants also resulted in a significant increase in both concanavalin A- and lipopolysaccharide-stimulated thymidine incorporation into murine splenic lymphocytes prepared from 45-day-old female mice. These data extend the role of PRL as an immunomodulator of adult lymphocyte function to a role in the developmental expression of T- and B-lymphocyte populations in the thymus and spleen of mice.

Documentos Relacionados