Nonopsonic binding of Mycobacterium tuberculosis to human complement receptor type 3 expressed in Chinese hamster ovary cells.

AUTOR(ES)
RESUMO

Nonopsonic invasion of mononuclear phagocytes by Mycobacterium tuberculosis is likely important in the establishment of a primary infection in the lung. M. tuberculosis binds to a variety of phagocyte receptors, of which the mannose receptor and complement receptor type 3 (CR3) may support nonopsonic binding. CR3, a beta2 integrin, is a target for diverse intracellular pathogens, but its role in nonopsonic binding remains uncertain. We have examined the binding of M. tuberculosis H37Rv to human CR3 heterologously expressed in Chinese hamster ovary (CHO) cells, thereby circumventing the problems of competing receptors and endogenously synthesized complement, which are inherent in studies with mononuclear phagocytes. The surface expression of CD11b and CD18 was assessed by immunofluorescence, immunobead binding, flow cytometry, and immunoprecipitation with anti-CD11b and anti-CD18 monoclonal antibodies (MAbs). The functional activity of the surface-expressed CD11b/CD18 (CR3) heterodimer was confirmed by rosetting with C3bi-coated microspheres. We found that M. tuberculosis bound four- to fivefold more avidly to CR3-expressing CHO cells than to wild-type cells and, importantly, that this binding was at similar levels in the presence of fresh or heat-inactivated human or bovine serum or no serum. In contrast, Mycobacterium smegmatis bound poorly to CR3-expressing CHO cells in the absence of serum, but after opsonization in serum, binding was comparable to that of M. tuberculosis. The binding of M. tuberculosis to the transfected CHO cells was CR3 specific, as it was inhibited by anti-CR3 MAbs, particularly the anti-CD11b MAbs LM2/1 (I domain epitope) and OKM1 (C-terminal epitope), neither of which inhibit C3bi binding. MAb 2LPM19c, which recognizes the C3bi-binding site on CD11b, had little or no effect on M. tuberculosis binding. The converse was found for the binding of opsonized M. smegmatis, which was strongly inhibited by 2LPM19c but unaffected by LM2/1 or OKM1. CR3-specific binding was also evidenced by the failure of M. tuberculosis to bind to CHO cells transfected with an irrelevant surface protein (angiotensin-converting enzyme) in the presence or absence of serum. We conclude that the binding of M. tuberculosis H37Rv to CR3 expressed in CHO cells is predominantly nonopsonic and that the organism likely expresses a ligand that binds directly to CR3.

Documentos Relacionados