Novel Chemical Class of pUL97 Protein Kinase-Specific Inhibitors with Strong Anticytomegaloviral Activity

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

Human cytomegalovirus (HCMV) is a major human pathogen frequently associated with life-threatening disease in immunosuppressed patients and newborns. The HCMV UL97-encoded protein kinase (pUL97) represents an important determinant of viral replication. Recent studies demonstrated that pUL97-specific kinase inhibitors are powerful tools for the control of HCMV replication. We present evidence that three related quinazoline compounds are potent inhibitors of the pUL97 kinase activity and block in vitro substrate phosphorylation, with 50% inhibitory concentrations (IC50s) between 30 and 170 nM. Replication of HCMV in primary human fibroblasts was suppressed with a high efficiency. The IC50s of these three quinazoline compounds (2.4 ± 0.4, 3.4 ± 0.6, and 3.9 ± 1.1 μM, respectively) were in the range of the IC50 of ganciclovir (1.2 ± 0.2 μM), as determined by the HCMV green fluorescent protein-based antiviral assay. Importantly, the quinazolines were demonstrated to have strong inhibitory effects against clinical HCMV isolates, including ganciclovir- and cidofovir-resistant virus variants. Moreover, in contrast to ganciclovir, the formation of resistance to the quinazolines was not observed. The mechanisms of action of these compounds were confirmed by kinetic analyses with infected cells. Quinazolines specifically inhibited viral early-late protein synthesis but had no effects at other stages of the replication cycle, such as viral entry, consistent with a blockage of the pUL97 function. In contrast to epithelial growth factor receptor inhibitors, quinazolines affected HCMV replication even when they were added hours after virus adsorption. Thus, our findings indicate that quinazolines are highly efficient inhibitors of HCMV replication in vitro by targeting pUL97 protein kinase activity.

Documentos Relacionados