Nucleotide sequence and mutational analysis of the gene encoding KpsD, a periplasmic protein involved in transport of polysialic acid in Escherichia coli K1.

AUTOR(ES)
RESUMO

The 17-kb kps gene cluster encodes proteins necessary for the synthesis, assembly, and translocation of the polysialic acid capsule of Escherichia coli K1. We previously reported that one of these genes, kpsD, encodes a 60-kDa periplasmic protein that is involved in the translocation of the polymer to the cell surface. The nucleotide sequence of the 2.4-kb BamHI-PstI fragment accommodating the kpsD gene was determined. Sequence analysis showed an open reading frame for a 558-amino-acid protein with a typical N-terminal prokaryotic signal sequence corresponding to the first 20 amino acids. KpsD was overexpressed, partially purified, and used to prepare polyclonal antiserum. A chromosomal insertion mutation was generated in the kpsD gene and results in loss of surface expression of the polysialic acid capsule. Immunodiffusion analysis and electron microscopy indicated that polysaccharide accumulates in the periplasmic space of mutant cells. A wild-type copy of kpsD supplied in trans complemented the chromosomal mutation, restoring extracellular expression of the K1 capsule. However, a kpsD deletion derivative (kpsD delta C11), which results in production of a truncated KpsD protein lacking its 11 C-terminal amino acids, was nonfunctional. Western blot (immunoblot) data from cell fractions expressing KpsD delta C11 suggest that the truncated protein was inefficiently exported into the periplasm and localized primarily to the cytoplasmic membrane.

Documentos Relacionados