Ordered patterns of liquid crystal toroidal defects by microchannel confinement

AUTOR(ES)
FONTE

National Academy of Sciences

RESUMO

In this article we present experimental results demonstrating an approach to controlling the size and spatial patterning of defect domains in a smectic liquid crystal (LC) by geometric confinement in surface-modified microchannels. By confining the LC 4′-octyl-4-cyanobiphenyl in μm-sized rectangular channels with controlled surface polarity, we were able to generate defect domains that are not only nearly uniform in size but also arranged in quasi-2D ordered patterns. Atomic force microscopy measurements revealed that the defects have a toroidal topology, which we argue is dictated by the boundary conditions imposed by the walls of the microchannel. We show that the defects can be considered to be colloidal objects, which interact with each other to form ordered patterns. This method opens the possibility for exploiting the unique optical and rheological properties associated with LC defects to making new materials. For example, the control of the shape, size, and spatial arrangement of the defects at the mesoscale suggests applications in patterning, templating, and when extended to lyotropic LCs, a process leading to uniform-sized spherical particles for chemical encapsulation and delivery.

Documentos Relacionados