Overproduction of topoisomerase II in an ataxia telangiectasia fibroblast cell line: comparison with a topoisomerase II-overproducing hamster cell mutant.

AUTOR(ES)
RESUMO

Ataxia telangiectasia (AT) cell lines are characterised by their hypersensitivity to ionizing radiation and bleomycin, and their failure to inhibit DNA synthesis after DNA damage. A recent report [Singh et al. (1988) Nucl. Acids Res. 16, 3919-3929] indicated that a reduction in topoisomerase II (topo II) activity was a feature of AT lymphoblast cell lines. We have studied the possible role of DNA topoisomerases in determining the phenotype of an AT fibroblast cell line. AT5BIVA cells are sensitive to the topo II inhibitors etoposide (VP16) and amsacrine (m-AMSA), compared to normal human fibroblasts (MRC5-V1 and VA13). AT5BIVA cells express a 3-fold higher level of topo II protein than MRC5-V1 cells, and 6-fold higher than VA13. This is reflected in elevated topo II activity in AT5BIVA cells. Untransformed AT5BI cells also show elevated topo II activity compared to untransformed normal cells. The extent of overproduction of topo II in AT5BIVA cells is comparable with that seen in a mutant Chinese hamster cell line, ADR-1, which is similarly hypersensitive to both bleomycin and topo II inhibitors. However, ADR-1 cells show neither hypersensitivity to ionizing radiation nor abnormal inhibition of DNA synthesis following DNA damage. Topo II overproduction per se does not appear sufficient to generate an "AT-like" phenotype. AT5BIVA cells express a reduced level of topoisomerase I (topo I) and are hypersensitive to the topo I inhibitor, camptothecin. ADR-1 cells express a normal level of topo I, indicating that a reduction in the level of topo I is not the inevitable consequence of an elevation in topo II.

Documentos Relacionados