Oxidation of NADH in Glyoxysomes by a Malate-Aspartate Shuttle 1

AUTOR(ES)
RESUMO

Glyoxysomes isolated from germinating castor bean endosperm accumulate NADH by β-oxidation of fatty acids. By utilizing the glutamate: oxaloacetate aminotransferase and malate dehydrogenase present in glyoxysomes and mitochondria, reducing equivalents could be transferred between the organelles by a malate-aspartate shuttle. The addition of aspartate plus α-ketoglutarate to purified glyoxysomes brought about a rapid oxidation of accumulated NADH, and the oxidation was prevented by aminooxyacetate, an inhibitor of aminotransferase activity. Citrate synthetase activity in purified glyoxysomes could be coupled readily to glutamate: oxaloacetate aminotransferase activity as a source of oxaloacetate, but coupling to malate dehydrogenase and malate resulted in low rates of citrate formation. Glyoxysomes purified in sucrose or Percoll gradients were permeable to low molecular weight compounds. No evidence was obtained for specific transport mechanisms for the proposed shuttle intermediates. The results support a revised model of gluconeogenic metabolism incorporating a malate-aspartate shuttle in the glyoxysomal pathway.

Documentos Relacionados