Pathogenic Yersinia Species Carry a Novel, Cold-Inducible Major Cold Shock Protein Tandem Gene Duplication Producing both Bicistronic and Monocistronic mRNA

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

Inverse PCR was used to amplify major cold shock protein (MCSP) gene families from a diverse range of bacteria, including the psychrotolerant Yersinia enterocolitica, which was found to have two almost identical MCSP coding regions (cspA1 and cspA2) located approximately 300 bp apart. This tandem gene duplication was also found in Y. pestis, Y. pseudotuberculosis, and Y. ruckeri but not in other bacteria. Analysis of the transcriptional regulation of this MCSP gene in Y. enterocolitica, performed by using both reverse transcriptase-PCR and Northern blot assays, showed there to be two cold-inducible mRNA templates arising from this locus: a monocistronic template of approximately 450 bp (cspA1) and a bicistronic template of approximately 900 bp (cspA1/A2). The former may be due to a secondary structure between cspA1 and cspA2 causing either 3′ degradation protection of cspA1 or, more probably, partial termination after cspA1. Primer extension experiments identified a putative transcriptional start site (+1) which is flanked by a cold-box motif and promoter elements (−10 and −35) similar to those found in Escherichia coli cold-inducible MCSP genes. At 30°C, the level of both mRNA molecules was negligible; however, upon a temperature downshift to 10°C, transcription of the bicistronic mRNA was both substantial (300-fold increase) and immediate, with transcription of the monocistronic mRNA being approximately 10-fold less (30-fold increase) and significantly slower. The ratio of bicistronic to monocistronic mRNA changed with time after cold shock and was higher when cells were shocked to a lower temperature. High-resolution, two-dimensional protein gel electrophoresis showed that synthesis of the corresponding proteins, both CspA1 and CspA2, was apparent after only 10 min of cold shock from 30°C to 10°C. The data demonstrate an extraordinary capacity of the psychrotolerant Y. enterocolitica to produce major cold shock proteins upon cold shock.

Documentos Relacionados