Patterns of Viral DNA Integration in Cells Transformed by Wild Type or DNA-Binding Protein Mutants of Adenovirus Type 5 and Effect of Chemical Carcinogens on Integration

AUTOR(ES)
RESUMO

The integration pattern of viral DNA was studied in a number of cell lines transformed by wild-type adenovirus type 5 (Ad5 WT) and two mutants of the DNA-binding protein gene, H5ts125 and H5ts107. The effect of chemical carcinogens on the integration of viral DNA was also investigated. Liquid hybridization (C0t) analyses showed that rat embryo cells transformed by Ad5 WT usually contained only the left-hand end of the viral genome, whereas cell lines transformed by H5ts125 or H5ts107 at either the semipermissive (36°C) or nonpermissive (39.5°C) temperature often contained one to five copies of all or most of the entire adenovirus genome. The arrangement of the integrated adenovirus DNA sequences was determined by cleavage of transformed cell DNA with restriction endonucleases XbaI, EcoRI, or HindIII followed by transfer of separated fragments to nitrocellulose paper and hybridization according to the technique of E. M. Southern (J. Mol. Biol. 98: 503-517, 1975). It was found that the adenovirus genome is integrated as a linear sequence covalently linked to host cell DNA; that the viral DNA is integrated into different host DNA sequences in each cell line studied; that in cell lines that contain multiple copies of the Ad5 genome the viral DNA sequences can be integrated in a single set of host cell DNA sequences and not as concatemers; and that chemical carcinogens do not alter the extent or pattern of viral DNA integration.

Documentos Relacionados