Peptidoglycan-associated polypeptides of Mycobacterium tuberculosis.

AUTOR(ES)
RESUMO

Important protein-based immunoreactivities have long been associated with the cell wall core of mycobacteria. In order to explore the molecular basis of such activities, purified cell walls of Mycobacterium tuberculosis were extracted with sodium dodecyl sulfate to produce an insoluble residue composed of the mycolylarabinogalactan-peptidoglycan complex and about 2% of unextractable protein. Treatment of the product from an avirulent strain of M. tuberculosis with trifluoromethanesulfonic acid released a single polypeptide with a molecular size of 23 kilodaltons, accounting for all of the insoluble cell wall protein. Extensive purification and then analysis of the 23-kilodalton protein demonstrated the absence of diaminopimelic acid, muramic acid, or other peptidoglycan components, pointing to either a novel linkage between protein and peptidoglycan or a noncovalent but tenacious association. The released 23-kilodalton protein showed amino acid homology and other similarities to the outer membrane protein OmpF of Escherichia coli. Although a similar product was released in small quantities from cell walls of the virulent M. tuberculosis Erdman and H37Rv by lysozyme treatment, the cell walls of virulent bacilli were dominated by the presence of poly-alpha-L-glutamine, accounting for as much as 10% of their weight. The poly-alpha-L-glutamine was successfully separated from the cell wall proper, demonstrating again the absence of a covalent association between peptidoglycan and the polymer. The antigenicity of these products is demonstrated, and their roles vis-a-vis analogous polypeptides from other bacteria in immunogenicity, pathogenicity, and bacterial physiology are discussed.

Documentos Relacionados