Pharmacokinetics, oral bioavailability, and metabolic disposition in rats of (-)-cis-5-fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl] cytosine, a nucleoside analog active against human immunodeficiency virus and hepatitis B virus.

AUTOR(ES)
RESUMO

The pharmacokinetics and metabolism of the potent anti-human immunodeficiency virus and anti-hepatitis B virus compound, (-)-cis-5-fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl] cytosine (FTC), were investigated in male CD rats. Plasma clearance of 10 mg of FTC per kg of body weight was biexponential in rats, with a half-life at alpha phase of 4.7 +/- 1.1 min (mean +/- standard deviation) and a half-life at beta phase of 44 +/- 8.8 min (n = 5). The total body clearance of FTC was 1.8 +/- 0.1 liters/h/kg, and the oral bioavailability was 90% +/- 8%. The volume of distribution at steady state (Vss) was 1.5 +/- 0.1 liters/kg. Increasing the dose to 100 mg/kg slowed clearance to 1.5 +/- 0.2 liters/kg/h, lowered the Vss to 1.2 +/- 0.2 liters/kg, and reduced the oral bioavailability to 65% +/- 15%. FTC in the brains of rats was initially less than 2% of the plasma concentration but increased to 6% by 2 h postdose. Probenecid elevated levels of FTC in plasma as well as in brains but did not alter the brain-to-plasma ratio. The urinary and fecal recoveries of unchanged FTC after a 10-mg/kg intravenous dose were 87% +/- 3% and 5% +/- 1.6%, respectively. After a 10-mg/kg oral dose, respective urinary and fecal recoveries were 70% +/- 2.5% and 25% +/- 1.6%. Two sulfoxides of FTC were observed in the urine, accounting for 0.4% +/- 0.03% and 2.7% +/- 0.2% of the intravenous dose and 0.4% +/- 0.06% and 2.5% +/- 0.3% of the oral dose. Also observed were 5-fluorocytosine, representing 0.4% +/- 0.06% of the intravenous dose and 0.4% +/- 0.07% of the oral dose, and FTC glucuronide, representing 0.7% +/- 0.2% of the oral dose and 0.4% +/- 0.2% of the intravenous dose. Neither deaminated FTC nor 5-fluorouracil was observed in the urine (less than 0.2% of dose). The high oral availability and minimal metabolism of FTC encourage its further preclinical development.

Documentos Relacionados