Phosphorylation in vitro of Escherichia coli-produced 235R and 266R tumor antigens encoded by human adenovirus type 12 early transformation region 1A.

AUTOR(ES)
RESUMO

The tumor (T) antigens encoded by the human adenovirus early transforming region 1A (E1A) are gene regulatory proteins whose functions can immortalize cells. We have recently described the synthesis in Escherichia coli and the purification of the complete T antigens encoded by the adenovirus type 12 (Ad12) E1A 12S mRNA (235-residue [235R] T antigen) and 13S mRNA (266R T antigen). In this study, we show that the Ad12 E1A T antigens are extensively phosphorylated in Ad12-infected mammalian cells but are not phosphorylated in E. coli. Inasmuch as posttranslational phosphorylation at specific amino acid sites may be important for biological activity, we have studied the phosphorylation of the E. coli-produced T antigens in vitro by using a kinase activity isolated from cultured human KB cells. The kinase was purified about 300-fold and appears to be a cyclic AMP-independent, Ca2+-independent protein kinase requiring only ATP and Mg2+ for activity. To determine which amino acids are phosphorylated and whether phosphorylation in vitro occurs at the same amino acid sites that are phosphorylated in vivo, the Ad12 E1A T-antigen species synthesized by infected cells were metabolically labeled with 32Pi and compared with the E. coli-produced E1A T antigens labeled in vitro with [gamma-32P]ATP by using the partially purified kinase. Partial V8 proteolysis analysis gave similar patterns for in vivo- and in vitro-phosphorylated T antigen. Two-dimensional maps of tryptic phosphopeptides and of chymotryptic phosphopeptides suggested that mainly the same amino acid sites are phosphorylated in vitro and in vivo and that phosphorylation occurred at multiple sites distributed throughout the T-antigen molecule. Serine was the only amino acid that was phosphorylated both in vivo and in vitro, and, surprisingly, most serines appeared to be phosphorylated. The feasibility of faithfully phosphorylating T antigens in vitro suggests that the E. coli-produced Ad12 E1A 235R and 266R T antigens may prove useful for molecular studies on T-antigen function.

Documentos Relacionados