Phosphorylation of Vesicular Stomatitis Virus In Vivo and In Vitro

AUTOR(ES)
RESUMO

The structural protein, NS, of purified vesicular stomatitis virus (VSV) is a phosphoprotein. In infected cells phosphorylated NS is found both free in the cytoplasm and as part of the viral ribonucleoprotein (RNP) complex containing both the 42S RNA and the structural proteins L, N, and NS, indicating that phosphorylation occurs as an early event in viral maturation. VSV contains an endogenous protein kinase activity, probably of host region, which catalyzes the in vitro phosphorylation of the viral proteins NS, M, and L, but not of N or G. The phosphorylated sites on NS appear to be different in the in vivo and in vitro reactions, and are differentially sensitive to alkaline phosphatase. After removal of the membrane components of purified VSV with a dextran-polyethylene glycol two-phase separation, the kinase activity remains tightly associated with the viral RNP. However, viral RNP isolated from infected cells shows only a small amount of kinase activity. The protein kinase enzyme appears to be a cellular contaminant of purified VSV because an activity from the uninfected cell extract can phosphorylate in vitro the dissociated viral proteins NS and M. The virion-associated activity may be derived either from the cytoplasm or the plasma membrane of the host cell since both of these cellular components contain protein kinase activity similar to that found in purified VSV.

Documentos Relacionados