Quantitative discrimination of carrier-mediated excretion of isoleucine from uptake and diffusion in Corynebacterium glutamicum.

AUTOR(ES)
RESUMO

The efflux of isoleucine in whole cells of Corynebacterium glutamicum was studied. The different amino acid fluxes across the plasma membrane were functionally discriminated into passive diffusion, carrier-mediated excretion, and carrier-mediated uptake. Detailed kinetic analysis was made possible by controlled variation of internal isoleucine from low concentrations to 100 mM by feeding with mixtures of isoleucine-containing peptides. Isoleucine diffusion was experimentally separated and proceeded with a first-order rate constant of 0.083 min-1 or 0.13 microliters.min-1.mg (dry mass)-1, which corresponds to a permeability of 2 x 10(-8) cm.s-1. Uptake of isoleucine was constant at a rate of 1.1 nmol.min-1.mg (dry mass)-1. Carrier-mediated isoleucine excretion was zero below a threshold of 8 mM cytosolic isoleucine. Above this level, a Michaelis-Menten-type kinetics was observed, with a Km of 21 mM (13 mM plus 8 mM threshold value) and a Vmax of 14.5 nmol.min-1.mg (dry mass)-1. The activity of the isoleucine excretion carrier depended on the presence of a membrane potential. Excretion was specific for L-isoleucine (and presumably L-leucine) and could be inhibited by SH reagents.

Documentos Relacionados