Reações de transferência de acila em microemulsões água/óleo: hidrólise de benzoatos de fenila catalisada pelo ânion o-iodosobenzoato. / Acyl-transfer reactions in water/oil microemulsions: phenyl benzoates hydrolysis catalysed by the o-iodosobenzoate anion.

AUTOR(ES)
DATA DE PUBLICAÇÃO

1997

RESUMO

The mechanism of hydrolysis of the following two series of phenylbenzoate esters catalyzed by 1-oxi-1,2-benziodoxol-3(1H)-one (o-iodosobenzoate anion, IBA-), was studied in water-in-oil microemulsion (W/O mE) of benzylhexadecyl- dimethylammonium chloride (CBzCl) in benzene. 4-nitrophenyl 4-X-benzoates (X= NO2, CN, Cl and H) and Y-nitrophenyl 4-nitrobenzoates (Y= 4-NO2, 3-NO2, 4-CN, 3-CN, 4-Cl and H). The following results show that IBA- is acting as a nucleophilic catalyst: detection of the intermediate 1-(4-X-benzoyloxi)-1,2-benziodoxol-3(1H)-one (benzoyl-IBA) by FT-IR; absence of catalysis by the leaving group; and inverse kinetic solvent isotopic effect. The reaction proceeds by a two-step mechanism: - nucleophilic attack of IBA- on the ester, resulting in the formation of benzoyl-IBA and liberation of the corresponding phenol; - hydrolysis of this intermediate, giving the final products of the reaction, substituted benzoates and IBA-. Absorbance by the solvent precluded observation of the reaction intermediate, consequently only the first part of the reaction (i.e., micellar attack of IBA- on the ester) was studied in this Dissertation. The nature of the rate determining step, formation of the tetrahedral intermediate (Ester-IBA), was determined from application of the Hammett equation. A comparison between the data in W/O microemulsions and in binary organic solvent-water mixtures showed that the reaction is rather insensitive to medium effects. The catalytic rate constants in W/O microemulsion, in 14% CH3CN/H2O, in 35,1% CH3CN/H2O, and in 56,5% CH3OH/H2O are very similar. The activation enthalpy of the micellar reaction is 3 kcal.mol-1 lower than the value in aqueous media, but this is compensated by a decrease of the same order in the entropic term. The sensitivity of the reaction to substitution in the acyl group increases in going from aqueous media to the W/O microemulsions, while the sensitivity to substitution in the phenyl moiety is almost the same in all media. These effects are apparently caused by a partial desolvation of both IBA- and the transition state in the interfacial region, the former desolvation being more pronounced. The catalysis mechanism by IBA- seems to be the same, with the same rate determining step (nucleophilic attack of IBA- on the ester), for all the studied systems. The differences observed for the reaction in W/O mE (greater sensitivity to substitution in the ester acyl group, lower values of enthalpy and entropy) are a result of the partial desolvation of IBA- in this system.

ASSUNTO(S)

ester hydrolysis catálise hidrólise de ésteres catalysis o-iodosobenzoato iba o-iodosobenzoate

Documentos Relacionados