Reactivation of peptidoglycan synthesis in ether-permeabilized Escherichia coli after inhibition by beta-lactam antibiotics.

AUTOR(ES)
RESUMO

The recovery of peptidoglycan-synthesizing activity after inhibition by beta-lactam antibiotics was investigated in ether-permeabilized cells of Escherichia coli B. Such cells synthesize sodium dodecyl sulfate-insoluble peptidoglycan when provided with UDP-linked precursors and Mg2+. The ability of beta-lactam antibiotics to inhibit the synthesis of peptidoglycan was correlated with their affinity for penicillin-binding proteins 1A and 1Bs. Penicillin-binding protein 1Bs is thought to be the major peptidoglycan synthetase in E. coli and is a major lethal target for beta-lactam antibiotics. Ether-treated bacteria were preincubated with concentrations of beta-lactams sufficient to completely inhibit peptidoglycan synthesis and then treated with beta-lactamases to inactivate free antibiotic prior to measurement of peptidoglycan synthesis. At 40 min after beta-lactamase treatment, the rate of peptidoglycan synthesis was about 74% of the control rate in cells pretreated with ampicillin, but only 15% of the control in cells pretreated with penicillin G or azlocillin. Reversal of inhibition by several other antibiotics fell between these extremes. When cross-linking of peptidoglycan was measured specifically, reversal of inhibition by ampicillin also occurred more readily than that by penicillin G. Reactivation of peptidoglycan synthesis was not due to de novo synthesis of penicillin-binding proteins since it occurred under conditions that did not allow incorporation of [14C]leucine. We conclude that there is considerable variation in the stability of the inactive acyl enzymes formed between various beta-lactams and penicillin-binding protein 1Bs, with those formed by penicillin G being relatively long-lived.

Documentos Relacionados