Real-Time Imaging of Fluorescent Flagellar Filaments of Rhizobium lupini H13-3: Flagellar Rotation and pH-Induced Polymorphic Transitions

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

The soil bacterium Rhizobium lupini H13-3 has complex right-handed flagellar filaments with unusual ridged, grooved surfaces. Clockwise (CW) rotation propels the cells forward, and course changes (tumbling) result from changes in filament speed instead of the more common change in direction of rotation. In view of these novelties, fluorescence labeling was used to analyze the behavior of single flagellar filaments during swimming and tumbling, leading to a model for directional changes in R. lupini. Also, flagellar filaments were investigated for helical conformational changes, which have not been previously shown for complex filaments. During full-speed CW rotation, the flagellar filaments form a propulsive bundle that pushes the cell on a straight path. Tumbling is caused by asynchronous deceleration and stops of individual filaments, resulting in dissociation of the propulsive bundle. R. lupini tumbles were not accompanied by helical conformational changes as are tumbles in other organisms including enteric bacteria. However, when pH was experimentally changed, four different polymorphic forms were observed. At a physiological pH of 7, normal flagellar helices were characterized by a pitch angle of 30°, a pitch of 1.36 μm, and a helical diameter of 0.50 μm. As pH increased from 9 to 11, the helices transformed from normal to semicoiled to straight. As pH decreased from 5 to 3, the helices transformed from normal to curly to straight. Transient conformational changes were also noted at high viscosity, suggesting that the R. lupini flagellar filament may adapt to high loads in viscous environments (soil) by assuming hydrodynamically favorable conformations.

Documentos Relacionados