Regeneration of misprimed nonribosomal peptide synthetases by type II thioesterases

AUTOR(ES)
FONTE

National Academy of Sciences

RESUMO

Nonribosomal peptide synthetases (NRPSs) assemble structurally complex peptides from simple building blocks such as amino and carboxyl acids. Product release by macrocyclization or hydrolysis is catalyzed by a thioesterase domain that is an integrated part of the NRPS enzyme. A second thioesterase of type II (TEII) encoded by a distinct gene associated with the NRPS cluster was previously shown by means of gene disruption to be important for efficient product formation. However, the actual role of TEIIs in nonribosomal peptide synthesis remained obscure. Here we report the biochemical characterization of two such TEII enzymes that are associated with the synthetases of the peptide antibiotics surfactin (TEIIsrf) and bacitracin (TEIIbac). Both enzymes were shown to efficiently regenerate misacylated thiol groups of 4′-phosphopantetheine (4′PP) cofactors attached to the peptidyl carrier proteins (PCPs) of NRPSs. For TEIIsrf, a KM of 0.9 μM and a kcat of 95 min−1 was determined for acetyl-PCP hydrolysis. Both enzymes could also hydrolyze aminoacyl or peptidyl PCPs, intermediates of nonribosomal peptide synthesis. However, this reaction is unlikely to be of physiological relevance. Similar intermediates of the primary metabolism such as CoA derivatives and acetyl-acyl carrier proteins of fatty acid synthesis were also not significantly hydrolyzed, as investigated with TEIIsrf. These findings support a model in which the physiological role of TEIIs in nonribosomal peptide synthesis is the regeneration of misacylated NRPS, which result from the apo to holo conversion of NRPS enzymes because of the promiscuity of dedicated 4′PP transferases that use not only free CoA, but also acyl-CoAs as 4′PP donors.

Documentos Relacionados