Regulation of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Activity in Response to Reduced Light Intensity in C4 Plants.

AUTOR(ES)
RESUMO

The light-dependent regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity was studied in 16 species of C4 plants representing all three biochemical subtypes and a variety of taxonomic groups. Rubisco regulation was assessed by measuring (a) the ratio of initial to total Rubisco activity, which reflects primarily the carbamylation state of the enzyme, and (b) total Rubisco activity per mol of Rubisco catalytic sites, which declines when 2-carboxyarabinitol 1-phosphate (CA1P) binds to carbamylated Rubisco. In all species examined, the activity ratio of Rubisco declined with a reduction in light intensity, although substantial variation was apparent between species in the degree of Rubisco deactivation. No relationship existed between the degree of Rubisco deactivation and C4 subtype. Dicots generally deactivated Rubisco to a greater degree than monocots. The total activity of Rubisco per catalytic site was generally independent of light intensity, indicating that CA1P and other inhibitors are not major contributors to the light-dependent regulation of Rubisco activity in C4 plants. The light response of the activity ratio of Rubisco was measured in detail in Amaranthus retroflexus, Brachiaria texana, and Zea mays. In A. retroflexus and B. texana, the activity ratio declined dramatically below a light intensity of 400 to 500 [mu]mol of photons m-2 s-1. In Z. mays, the activity ratio of Rubisco was relatively insensitive to light intensity compared with the other species. In A. retroflexus, the pool size of ribulose bisphosphate (RuBP) declined with reduced light intensity except between 50 and 500 [mu]mol m-2 s-1, when the activity ratio of Rubisco was light dependent. In Z. mays, by contrast, the pool size of RuBP was light dependent only below 350 [mu]mol m-2 s-1. These results indicate that, in response to changes in light intensity, most C4 species regulate Rubisco by reversible carbamylation of catalytic sites, as commonly observed in C3 plants. In a few species, notably Z. mays, Rubisco is not extensively regulated in response to changes in light intensity, possibly because the activity of the CO2 pump may become limiting for photosynthesis at subsaturating light intensity.

Documentos Relacionados