Regulation of Soybean Nitrogen Fixation in Response to Rhizosphere Oxygen: I. Role of Nodule Respiration

AUTOR(ES)
RESUMO

Nitrogen fixation (acetylene reduction) rates of nodules on intact field-grown soybean (Glycine max) subjected to altered oxygen concentration (0.06-0.4 cubic millimeter per cubic millimeter) returned to initial rates during an 8-hour transitory period. Hydroponically grown soybean plants also displayed a transitory (1-4 hours) response to changes in the rhizosphere oxygen concentration after which the fixation rates returned to those observed under ambient oxygen concentrations. It was hypothesized that soybean nodules contain a regulatory mechanism which maintains a stable oxygen concentration inside nodules at a sufficiently low concentration to allow nitrogenase to function. A possible physiological mechanism which could account for this regulation is adjustment in nodule respiration activity such that nodule oxygen concentration and nitrogen fixation are maintained at stable levels. Experiments designed to characterize the non-steady-state oxygen response and to test for the presence of nodule respiratory control are presented. Non-steady-state acetylene reduction and nodule respiration (oxygen uptake) rates measured after alterations in the external oxygen concentration indicated that the regulatory mechanism required 1 to 4 hours to completely adjust to changes in the external oxygen concentration. Steady-state nodule respiration, however, did not respond to alterations in the rhizosphere oxygen concentration. It was concluded that soybean nodules can adjust to a wide range of rhizosphere oxygen concentrations, but the mechanism which controls nitrogen fixation rates does not involve changes in the nodule respiration rate.

Documentos Relacionados