Relationship between work rate and oxygen uptake in mitochondrial myopathy during ramp-incremental exercise

AUTOR(ES)
FONTE

Brazilian Journal of Medical and Biological Research

DATA DE PUBLICAÇÃO

2011-04

RESUMO

We determined the response characteristics and functional correlates of the dynamic relationship between the rate (Δ) of oxygen consumption ( O2) and the applied power output (work rate = WR) during ramp-incremental exercise in patients with mitochondrial myopathy (MM). Fourteen patients (7 males, age 35.4 ± 10.8 years) with biopsy-proven MM and 10 sedentary controls (6 males, age 29.0 ± 7.8 years) took a ramp-incremental cycle ergometer test for the determination of the O2 on-exercise mean response time (MRT) and the gas exchange threshold (GET). The ΔO2/ΔWR slope was calculated up to GET (S1), above GET (S2) and over the entire linear portion of the response (S T). Knee muscle endurance was measured by isokinetic dynamometry. As expected, peak O2 and muscle performance were lower in patients than controls (P < 0.05). Patients had significantly lower ΔO2/ΔWR than controls, especially the S2 component (6.8 ± 1.5 vs 10.3 ± 0.6 mL·min-1·W-1, respectively; P < 0.001). There were significant relationships between ΔO2/ΔWR (S T) and muscle endurance, MRT-O2, GET and peak O2 in MM patients (P < 0.05). In fact, all patients with ΔO2/ΔWR below 8 mL·min-1·W-1 had severely reduced peak O2 values (<60% predicted). Moreover, patients with higher cardiopulmonary stresses during exercise (e.g., higher Δ ventilation/carbon dioxide output and Δ heart rate/ΔO2) had lower ΔO2/ΔWR (P < 0.05). In conclusion, a readily available, effort-independent index of aerobic dysfunction during dynamic exercise (ΔO2/ΔWR) is typically reduced in patients with MM, being related to increased functional impairment and higher cardiopulmonary stress.

Documentos Relacionados