Relative Significance of Exogenous and De Novo Synthesized Fatty Acids in the Formation of Rumen Microbial Lipids In Vitro †

AUTOR(ES)
RESUMO

Mixed rumen microorganisms (MRM) or suspensions of rumen Holotrich protozoa obtained from a sheep were incubated anaerobically with [1-14C]linoleic acid, [U-14C]glucose, or [1-14C]acetate. With MRM, the total amount of fatty acids present did not change after incubation. An increase in fatty acids esterified into sterolesters (SE) and polar lipids at the expense of free fatty acids was observed. This effect was intensified by the addition of fermentable carbohydrate to the incubations. Radioactivity from [1-14C]linoleic acid was incorporated into SE and polar lipids with both MRM and Holotrich protozoa. With MRM the order of incorporation of radioactivity was as follows: SE > phosphatidylethanolamine > phosphatidylcholine. With Holotrich protozoa, the order of incorporation was phosphatidylcholine > phosphatidylethanolamine > SE. With MRM the radioactivity remaining in the free fatty acids and that incorporated into SE was mainly associated with saturated fatty acids, but a considerable part of the radioactivity in the polar lipids was associated with dienoic fatty acids. This effect of hydrogenation prior to incorporation was also noted with Holotrich protozoa but to a much lesser extent. Small amounts of radioactivity from [U-14C]glucose and [1-14C]acetate were incorporated into rumen microbial lipids. With protozoa incubated with [U-14C]glucose, the major part of incorporated radioactivity was present in the glycerol moiety of the lipids. From the amounts of lipid classes present, their radioactivity, and fatty acid composition, estimates were made of the amounts of higher fatty acids directly incorporated into microbial lipids and the amounts synthesized de novo from glucose or acetate. It is concluded that the amounts directly incorporated may be greater than the amounts synthesized de novo.

Documentos Relacionados