Replication of an rRNA gene origin plasmid in the Tetrahymena thermophila macronucleus is prevented by transcription through the origin from an RNA polymerase I promoter.

AUTOR(ES)
RESUMO

In the somatic macronucleus of the ciliate Tetrahymena thermophila, the palindromic rRNA gene (rDNA) minichromosome is replicated from an origin near the center of the molecule in the 5' nontranscribed spacer. The replication of this rDNA minichromosome is under both cell cycle and copy number control. We addressed the effect on origin function of transcription through this origin region. A construct containing a pair of 1.9-kb tandem direct repeats of the rDNA origin region, containing the origin plus a mutated (+G), but not a wild type, rRNA promoter, is initially maintained in macronuclei as an episome. Late, linear and circular replicons with long arrays of tandem repeats accumulate (W.-J. Pan and E. H. Blackburn, Nucleic Acids Res, in press). We present direct evidence that the +G mutation inactivates this rRNA promoter. It lacks the footprint seen on the wild-type promoter and produces no detectable in vivo transcript. Independent evidence that the failure to maintain wild-type 1.9-kb repeats was caused by transcription through the origin came from placing a short DNA segment containing the rRNA gene transcriptional termination region immediately downstream of the wild-type rRNA promoter. Insertion of this terminator sequence in the correct, but not the inverted, orientation restored plasmid maintenance. Hence, origin function was restored by inactivating the rRNA promoter through the +G mutation or causing termination before transcripts from a wild-type promoter reached the origin region. We propose that transcription by RNA polymerase I through the rDNA origin inhibits replication by preventing replication factors from assembling at the origin.

Documentos Relacionados