RNA-DNA Covalent Bonds Between the RNA Primers and the DNA Products Formed by RNA Tumor Virus DNA Polymerase

AUTOR(ES)
RESUMO

Initiation of DNA synthesis by endogenous RNA primer molecules was studied with three different RNA tumor viruses. The influence of the method of virus disruption on the observed RNA-DNA bonds was ascertained. Ether disrupted virions of both murine leukemia virus (MuLV) and the B77 strain of avian sarcoma virus (B77 virus) have rC-dC and rA-dA covalent linkages between RNA primers and newly synthesized DNA. None of the 14 other possible bonds were formed. Ether-disrupted virions of avian myeloblastosis virus (AMV) have rU-dC and rA-dA linkages. In contrast, work reported herein and from other laboratories shows that Nonidet P-40 (NP-40)-disrupted virions of all three viruses have only the rA-dA junction. Studies with virus particles which were first disrupted with ether and then treated with NP-40 indicated that the detergent treatment disallowed the formation of the ribopyrimidine-dC internucleotide bond. The same transfers are found with AMV in the presence or absence of actinomycin D, where only single-stranded DNA is formed. This finding is consistent with the notion that virtually all of the significant primers have been recognized. In contrast to mature virions, transfer experiments with ether-disrupted early harvest (5 min) MuLV showed only the rC-dC bond; the rA-dA bond was absent. The short-time harvest contains a significantly higher proportion of infectious virions than 24-h harvests. Also, since the RNA from early harvest virus is appreciably more homogenous than the RNA of mature MuLV, it is concluded that the ribopyrimidine-dC linkage is the more significant initiation event from a biochemical standpoint.

Documentos Relacionados