RNase E-dependent cleavages in the 5' and 3' regions of the Escherichia coli unc mRNA.

AUTOR(ES)
RESUMO

The endonucleolytic processing of the unc mRNA encoding the eight subunits of the Escherichia coli F1F0-ATPase was studied. Northern (RNA) blots of mRNA expressed from a plasmid which contained the 3'-terminal portion of the operon including the uncDC sequences revealed, in addition to the expected 2-kb mRNA, a 0.5-kb RNA species which hybridized to an uncC antisense RNA probe. An uncD antisense RNA probe hybridized to only the 2-kb mRNA, implying that the upstream 1.5-kb fragment is rapidly degraded. The 5' end of the 0.5-kb fragment was determined by primer extension analysis to be 11 bases into the coding region of the uncC gene. In RNase E-deficient strains, the amount of the 0.5-kb product was strongly reduced while the levels of the precursor uncDC transcript remained high. Similar RNase E-dependent processing was found in the chromosomally encoded unc mRNA. As this RNase E-dependent cleavage directly inactivates uncC and appears to leave uncD susceptible to degradation, it seems unlikely to play a role in differential expression of the gene products but may be an important event in unc mRNA degradation. RNase E mutants also showed altered processing of the chromosomally encoded unc mRNA in the uncB region near the 5' end. The expected full-length (7-kb) transcript was recognized when RNA from the RNase E-deficient strain was subjected to Northern blot analysis with uncB- and uncC-specific probes. RNA from strains with functional RNase E lacked the 7-kb transcript but had a 6.2-kb mRNA detectable with the uncC but not the uncB probe. RNase E is therefore implicated in multiple cleavages of the unc mRNA.

Documentos Relacionados