Role of exonuclease III and endonuclease IV in repair of pyrimidine dimers initiated by bacteriophage T4 pyrimidine dimer-DNA glycosylase.

AUTOR(ES)
RESUMO

The role of exonuclease III and endonuclease IV in the repair of pyrimidine dimers in bacteriophage T4-infected Escherichia coli was examined. UV-irradiated T4 showed reduced survival when plated on an xth nfo double mutant but showed wild-type survival on either single mutant. T4 denV phage were equally sensitive when plated on wild-type E. coli or an xth nfo double mutant, suggesting that these endonucleases function in the same repair pathway as T4 pyrimidine dimer-DNA glycosylase. A uvrA mutant of E. coli in which the repair of pyrimidine dimers was dependent on the T4 denV gene carried on a plasmid was constructed. Neither an xth nor an nfo derivative of this strain was more sensitive than the parental strain to UV irradiation. We were unable to construct a uvrA xth nfo triple mutant. In addition, T4, which turns off the host UvrABC excision nuclease, showed reduced plating efficiency on an xth nfo double mutant.

Documentos Relacionados