Role of receptor binding in toxicity, immunogenicity, and adjuvanticity of Escherichia coli heat-labile enterotoxin.

AUTOR(ES)
RESUMO

The role of receptor binding in the toxicity, immunogenicity, and adjuvanticity of the heat-labile enterotoxin of Escherichia coli (LT) was examined by comparing native LT and LT(G33D), a B-subunit receptor binding mutant, with respect to the ability to bind to galactose and to GM1, toxicity on mouse Y-1 adrenal tumor cells, the ability to stimulate adenylate cyclase in Caco-2 cells, enterotoxicity in the patent mouse model, and oral immunogenicity and adjuvanticity. In contrast to native LT, LT(G33D) was unable to bind to the galactosyl moiety of Sepharose 4B or GM1 but did retain the lectin-like ability to bind to immobilized galactose on 6% agarose beads. LT(G33D) had no enterotoxicity in the patent mouse model but exhibited residual toxicity on mouse Y-1 adrenal tumor cells and had an ability equivalent to that of native LT to stimulate adenylate cyclase in Caco-2 cells (5,000 versus 6,900 pmol per mg of protein). In addition, LT(G33D) was unable to serve as an effective oral adjuvant for induction of immunoglobulin G or A directed against a coadministered antigen. Furthermore, LT(G33D) elicited negligible serum and mucosal antibody responses against itself. These data indicate that the toxicity, immunogenicity, and oral adjuvanticity of LT are dependent upon binding of the B subunit to ganglioside GM1.

Documentos Relacionados