Roles of cheY and cheZ gene products in controlling flagellar rotation in bacterial chemotaxis of Escherichia coli.

AUTOR(ES)
RESUMO

To understand output control in bacterial chemotaxis, we varied the levels of expression of cellular cheY and cheZ genes and found that the overproduction of the corresponding proteins affected Escherichia coli swimming behavior. In the absence of other signal-transducing gene products, CheY overproduction made free-swimming cells tumble more frequently. A plot of the fraction of the population that are tumbling versus the CheY concentration was hyperbolic, with half of the population tumbling at 30 microM (25,000 copies per cell) CheY monomers in the cytosol. Overproduction of aspartate receptor (Tar) by 30-fold had a negligible effect on CheY-induced tumbling, so Tar does not sequester CheY. CheZ overproduction decreased tumbling in all tumbling mutants except certain flaAII(cheC) mutants. In the absence of other chemotaxis gene products, CheZ overproduction inhibited CheY-induced tumbling. Models for CheY as a tumbling signal and CheZ as a smooth-swimming signal to control flagellar rotation are discussed.

Documentos Relacionados