Salt effect in growth and metabolism of Vigna unguiculata L. Walp and Vigna luteola (Jacq.) Benth / Efeito do sal no crescimento e metabolismo de Vigna unguiculata L. Walp e Vigna luteola (Jacq.) Benth

AUTOR(ES)
DATA DE PUBLICAÇÃO

2005

RESUMO

The excess of salt in the soil affects all the general metabolism of the plant causing physiologic and morphologic alterations. With the objective of evaluating the effects of salt in the growth and metabolism under saline stress, this study compares the responses of two Vigna species, with distinct sensitivity to salt, cultivated with the presence of NaCl in the following concentrations: 100mM, 250mM e 500mM. V. unguiculata presented significant reductions in fresh and dry mass, leaf area and number of leaves when subjected to salinity. However, these parameters were not affected in V. luteola. There is data in the literature which shows that plants that have adapted to salinity present the root/shoot ratio higher than sensitive plants. On the other hand, this increase was evidenced in the species which is most sensitive to salt, under salinity, keeping itself constant in V. luteola. The increase in juiciness, which is considered an adaptation to saline stress, was not present in either of the species studied. The resistance to saline stress has been associated to the activity of antioxidant enzymes, which remove reactive oxygen species. The increase in activity of total peroxidases was observed only in V. luteola. Under saline stress, only V. unguiculata presented an increase in siringaldazine oxidase activity. There was no evidence of relation between the growth of roots and the presence of this enzyme, since this species presented larger root growth due to salinity. The histochemical location of total peroxidases activity indicated that the distribution of the activity of these enzymes is similar in both species of Vigna (epidermis, cortex and central cylinder), however, there is stronger activity in V. luteola, especially under stress. In relation to the location of the seringaldazine oxidase enzyme, in V. unguiculatat was restricted to the epidermis, expanding to the cortex and central cylinder under saline stress. In V. luteola it was present in all parts of the root, intensifying when NaCl was applied during cultivation. The change in the membrane permeability is one of the results of salinity which is connected to the increase of reactive oxygen species concentration. An increase in eletrolites release was noticed in both Vigna species. Meanwhile, in V. unguiculata, the rise in this parameter was highly significative in the presence of NaCl and with results constantly higher than the results of the same treatments in V. luteola. The maintenance of the Na+/K+ ratio in the cells is a relevant factor to the tolerance of salinity. Na+ accumulation was observed in both Vigna species? roots and leaves. In roots, higher values were obtained in V. luteola, due to the higher Na+ concentration in this organ. In leaves, the highest Na+/K+ ratio change was obtained in V. unguiculata. The analysis of biochemical parameters under saline stress, show that there was no change in protein content (leaves), sucrose (leaves) and total soluble sugars (root and leaves) in Vigna luteola. Protein content was reduced in V. unguiculata leaves, while concentrations of total soluble sugars (root and leaves), sucrose (leaves) e malondialdeid (root) remained the same. Under salinity, there were no significant changes in the biochemical parameters of V. luteola, which allowed for its normal growth and development. The changes in biochemical indicators and lack of antioxidant response in V. unguiculata under salinity may be connected to its growth and development compromise under saline stress

ASSUNTO(S)

peroxidase salinity oxidative stress peroxidase estresse oxidativo salinidade plant - cell membrane plantas - membrana celular

Documentos Relacionados