SecG Function and Phospholipid Metabolism in Escherichia coli

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

SecG is an auxiliary protein in the Sec-dependent protein export pathway of Escherichia coli. Although the precise function of SecG is unknown, it stimulates translocation activity and has been postulated to enhance the membrane insertion-deinsertion cycle of SecA. Deletion of secG was initially reported to result in a severe export defect and cold sensitivity. Later results demonstrated that both of these phenotypes were strain dependent, and it was proposed that an additional mutation was required for manifestation of the cold-sensitive phenotype. The results presented here demonstrate that the cold-sensitive secG deletion strain also contains a mutation in glpR that causes constitutive expression of the glp regulon. Introduction of both the glpR mutation and the secG deletion into a wild-type strain background produced a cold-sensitive phenotype, confirming the hypothesis that a second mutation (glpR) contributes to the cold-sensitive phenotype of secG deletion strains. It was speculated that the glpR mutation causes an intracellular depletion of glycerol-3-phosphate due to constitutive synthesis of GlpD and subsequent channeling of glycerol-3-phosphate into metabolic pathways. In support of this hypothesis, it was demonstrated that addition of glycerol-3-phosphate to the growth medium ameliorated the cold sensitivity, as did introduction of a glpD mutation. This depletion of glycerol-3-phosphate is predicted to limit phospholipid biosynthesis, causing an imbalance in the levels of membrane phospholipids. It is hypothesized that this state of phospholipid imbalance imparts a dependence on SecG for proper function or stabilization of the translocation apparatus.

Documentos Relacionados