Seed coat-associated invertases of fava bean control both unloading and storage functions: cloning of cDNAs and cell type-specific expression.

AUTOR(ES)
RESUMO

We have studied the molecular physiology of photosynthate unloading and partitioning during seed development of fava bean (Vicia faba). During the prestorage phase, high levels of hexoses in the cotyledons and the apoplastic endospermal space are correlated with activity of cell wall-bound invertase in the seed coat. Three cDNAs were cloned. Sequence comparison revealed genes putatively encoding one soluble and two cell wall-bound isoforms of invertase. Expression was studied in different organs and tissues of developing seeds by RNA gel analysis, in situ hybridization, enzyme assay, and enzyme activity staining. One extracellular invertase gene is expressed during the prestorage phase in the thin-walled parenchyma of the seed coat, a region known to be the site of photoassimilate unloading. We propose a model for an invertase-mediated unloading process during early seed development and the regulation of cotyledonary sucrose metabolism. After unloading from the seed coat, sucrose is hydrolyzed by cell wall-bound invertases. Thus, invertase contributes to establish sink strength in young seeds. The resultant hexoses are loaded into the cotyledons and control carbohydrate partitioning via an influence on the sucrose synthase/sucrose-phosphate synthase pathway. The developmentally regulated degradation of the thin-walled parenchyma expressing the invertase apparently initiates the storage phase. This is characterized by a switch to a low sucrose/hexoses ratio. Feeding hexoses to storage-phase cotyledons in vitro increases the sucrose-phosphate synthase/sucrose synthase ratio and changes carbohydrate partitioning in favor of sucrose. Concomitantly, the transcript level of the major storage product legumin B is downregulated.

Documentos Relacionados