Sequences responsible for the distinctive hemolytic potentials of Friend and Moloney murine leukemia viruses are dispersed but confined to the psi-gag-PR region.

AUTOR(ES)
RESUMO

Friend and Moloney murine leukemia viruses (F- and M-MuLV) induce distinct diseases in hematopoietic tissues following inoculation of newborn mice of susceptible strains. F-MuLV induces erythroleukemia preceded by severe early hemolytic anemia; M-MuLV induces thymomas and only very mild hemolysis. The major viral determinant of severe early hemolytic anemia residues in the env gene, but sequences located outside this gene can modulate this effect. By means of genetic chimeras of F- and M-MuLV, we have found that although they are confined to the 5' portion of the env gene intron, sequences that determine the distinctive hemolytic potentials of F- and M-MuLV are widely distributed over a region spanning the RNA encapsidation domain, the gag gene, and the portion of the pol gene encoding the viral protease. Within this large region, two fragments of M-MuLV, a 1.3-kb region encoding the matrix, pp12, and capsid proteins and a 0.8-kb region encoding the nucleocapsid and the viral protease, were capable, individually, of partially attenuating the capacity of F-MuLV for induction of severe early hemolytic anemia. In association, these two fragments conferred complete attenuation. Moreover, a second pair of adjacent fragments within this large region appeared to behave cooperatively to confer complete attenuation; a 0.36-kb region roughly corresponding to the encapsidation domain, although not detectably altering hemolytic potential on its own, deepened the attenuation conferred by the adjacent 1.3-kb region. Whether capable of inducing severe early hemolytic anemia or not and despite different efficiencies of induction of recombinant polytropic viruses, all chimeric viruses retained the erythroleukemogenicity of the F-MuLV parent.

Documentos Relacionados