Simian Virus 40 DNA Replication in Isolated Replicating Viral Chromosomes

AUTOR(ES)
RESUMO

Three subnuclear systems capable of continuing many aspects of simian virus 40 (SV40) DNA replication were characterized in an effort to define the minimum requirements for “normal” DNA replication in vitro. Nuclear extracts, prepared by incubating nuclei isolated from SV40-infected CV-1 cells in a hypotonic buffer to release both SV40 replicating and mature chromosomes, were either centrifuged to separate the total SV40 nucleoprotein complexes from the soluble nucleosol or fractionated on sucrose gradients to provide purified SV40 replicating chromosomes. With nuclear extracts, CV-1 cell cytosol stimulated total DNA synthesis, elongation of nascent DNA chains, maturation and joining of “Okazaki pieces,” and the conversion of replicating viral DNA into covalently closed, superhelical DNA. Nucleoprotein complexes responded similarly, but frequently the response was reduced by 10 to 30%. In contrast, isolated replicating chromosomes in the presence of cytosol appeared only to complete and join Okazaki pieces already present on the template; without cytosol, Okazaki pieces incorporated α-32P-labeled deoxynucleoside triphosphates but failed to join. Consequently, replicating chromosomes failed to extensively continue nascent DNA chain growth, and the conversion of viral replicating DNA into mature DNA was seven to eight times less than that observed in nuclear extracts. Addition of neither cytosol nor nucleosol corrected this problem. In the presence of cytosol, nonspecific endonuclease activity was not a problem in any of the three in vitro systems. Extensive purification of replicating chromosomes was limited by three as yet irreversible phenomena. First, replicating chromosomes isolated in a low-ionic-strength medium had a limited capability to continue DNA synthesis. Second, diluting either nuclear extracts or replicating chromosomes before incubation in vitro stimulated total DNA synthesis but was accompanied by the simultaneous appearance of small-molecular-weight nascent DNA not associated with intact viral DNA templates and a decrease in the synthesis of covalently closed viral DNA. Although this second phenomenon appeared similar to the first, template concentration alone could not account for the failure of purified replicating chromosomes to yield covalently closed DNA. Finally, preparation of nucleoprotein complexes in increasing concentrations of NaCl progressively decreased their ability to continue DNA replication. Exposure to 0.3 M NaCl removed one or more factors required for DNA synthesis which could be replaced by addition of cytosol. However, higher NaCl concentrations yielded nucleoprotein complexes that had relatively no endogenous DNA synthesis activity and that no longer responded to cytosol. These data demonstrate that continuation of endogenous DNA replication in vitro requires both the soluble cytosol fraction and a complex nucleoprotein template whose ability to continue DNA synthesis depends on its concentration and ionic environment during its preparation.

Documentos Relacionados