Smooth muscle alternative splicing induced in fibroblasts by heterologous expression of a regulatory gene.

AUTOR(ES)
RESUMO

Alternative splicing is a common mechanism for regulating gene expression in different cell types. In order to understand this important process, the trans-acting factors that enforce the choice of particular splicing pathways in different environments must be identified. We have used the rat alpha-tropomyosin gene as a model system of tissue-specific alternative splicing. Exon 3 of alpha-tropomyosin is specifically inhibited in smooth muscle cells allowing the alternative inclusion of exon 2. We have used a novel gene transfer and selection strategy to detect a gene whose expression in fibroblasts is sufficient to switch them to smooth muscle-specific splicing of alpha-tropomyosin and also alpha-actinin. Extracts from the regulating fibroblasts contain an apparently novel 55 kDa protein which binds to RNA elements required for regulation of tropomyosin splicing. This protein is not detected in extracts of non-regulating cells and is therefore a strong candidate cell-specific splicing regulator. These experiments advance our understanding of smooth muscle splicing regulation as well as establishing a means for direct cloning of tissue-specific splicing regulators which have so far been refractory to biochemical analysis.

Documentos Relacionados