Solid phase-supported thymine dimers for the construction of dimer-containing DNA by combined chemical and enzymatic synthesis: a potentially general method for the efficient incorporation of modified nucleotides into DNA.

AUTOR(ES)
RESUMO

The ability to study the structure-activity relationships of the cis-syn thymine dimer, the major photoproduct of DNA, has been greatly aided by the availability of a building block suitable for its sequence-specific incorporation into oligonucleotides by standard automated DNA synthesis. Unfortunately, its usefulness is compromised by the fact that it takes six steps to synthesize in low overall yield and, as with all phosphoramidite building blocks, has to be used in great excess over the support in standard automated synthesis. To extend the usefulness of this building block, we have directly coupled it to standard A, C, G and T long chain alkylamine-linked controlled pore glass supports to yield a solid phase-supported dimer. We then demonstrate that 13mers containing a 3'-terminal d(T[cis-syn]TN) group synthesized with this support at 0.2 micromol scale can be efficiently incorporated into longer oligonucleotides by both primer extension with 3'-->5'exonuclease-deficient Klenow fragment or T4 polymerase and dNTPs or by enzymatic ligation with T4 DNA ligase to another oligonucleotide opposite a complementary template. The site specificity and integrity of the cis-syn thymine dimer after both primer extension and ligation was confirmed by cis-syn dimer-specific cleavage with T4 denV endonuclease V. This general approach should be applicable to the synthesis of many types of site-specific nucleic acid modifications and would be of particular use for those for which the required building blocks are expensive or difficult to make.

Documentos Relacionados