Spatial order within but not between types of retinal neurons

AUTOR(ES)
FONTE

The National Academy of Sciences

RESUMO

We studied the mosaics of six types of retinal neurons, asking how the position of a cell relates to the positions of other cells of that same type and also to cells of different types. Every neuron studied was found to be nonrandomly positioned: Cells of a particular type were evenly spaced. However, all cells were positioned randomly with respect to members of the other cell classes. This was true even when the cells were known to be synaptically connected. It is consistent with a concept of developmental pattern formation in which (i) the number of cells of a particular type and their laminar distribution are specified, and (ii) the final spatial position of each cell is controlled exclusively by a rule that prevents cells of the same type from being positioned close to each other. This sequence would imply that a cell's final position is independent of the cell's position at the time of its specification, and we suggest a reason why, in laminar structures containing many cell types, it might be desirable for this to be so.

Documentos Relacionados