Specific binding of MobA, a plasmid-encoded protein involved in the initiation and termination of conjugal DNA transfer, to single-stranded oriT DNA.

AUTOR(ES)
RESUMO

MobA protein, encoded by the broad host-range plasmid R1162, is required for conjugal mobilization of this plasmid. The protein is an essential part of the relaxosome, and is also necessary for the termination of strand transfer. In vitro, MobA is a nuclease specific for one of the two DNA strands of the origin of transfer (oriT). The protein can cleave this strand at the same site that is nicked in the relaxosome, and can also ligate the DNA. We show here that purified MobA protein forms a complex that is specific for this single oriT strand. The complex is unusually stable, with a half-life of approximately 95 min, is not disrupted by hybridization with the complementary strand, and reforms rapidly after boiling. Both the inverted repeat within oriT, and the eight bases between this repeat and the site cleaved by MobA, are required for binding by the protein. Mutations reducing base complementarity between the arms of the inverted repeat also decrease binding. This effect is partially suppressed by second-site mutations restoring complementarity. These results parallel the effects of these mutations on termination. Footprinting experiments with P1 nuclease indicate that the DNA between the inverted repeat and the nick site is protected by MobA, but that pairing between the arms of the repeat, which occurs in the absence of protein, is partially disrupted. Our results suggest that termination of strand transfer during conjugation involves tight binding of the MobA protein to the inverted repeat and adjacent oriT DNA. This complex positions the protein for ligation of the ends of the transferred strand, to reform a circular plasmid molecule.

Documentos Relacionados