Splice site choice in a complex transcription unit containing multiple inefficient polyadenylation signals.

AUTOR(ES)
RESUMO

The relationship between polyadenylation and splicing was investigated in a model system consisting of two tandem but nonidentical polyomavirus late transcription units. This model system exploits the polyomavirus late transcription termination and polyadenylation signals, which are sufficiently weak to allow the production of many multigenome-length primary transcripts with repeating introns, exons, and poly(A) sites. This double-genome construct contains exons of two types, those bordered by 3' and 5' splice sites (L1 and L2) and those bordered by a 3' splice site and a poly(A) site (V1 and V2). The L1 and L2 exons are distinguishable from one another but retain identical flanking RNA processing signals, as is the case for the V1 and V2 exons. Analysis of cytoplasmic RNAs obtained from mouse cells transfected with this construct and its derivatives revealed the following. (i) V1 and V2 exons are often skipped during pre-mRNA processing, while L1 and L2 exons are not skipped. (ii) No messages contain internal, unused polyadenylation signals. (iii) Poly(A) site choice is not required for the selection of an upstream 3' splice site. (iv) When two tandem poly(A) sites are placed downstream of a 3' splice site, the first poly(A) site is chosen almost exclusively, even though transcription can proceed past both sites. (v) Placing a 3' splice site between these two tandem poly(A) sites allows the more distal site to be chosen. These and other available data are most consistent with a model in which terminal exons are produced by the coordinate selection and use of a 3' splice site with the nearest available downstream poly(A) site.

Documentos Relacionados