Spontaneous Mutation Rate of Modifiers of Metabolism in Drosophila

AUTOR(ES)
RESUMO

A rigorous test of our understanding of evolutionary quantitative genetics would be to predict accurately the equilibrium distribution of a character from empirical estimates of the relevant parameters in a mutation-selection-drift balance model. an aspect of this problem that is amenable to experimental analysis is the distribution of the effects of new mutations. This study quantifies the divergence among 200 lines of Drosophila melanogaster as they accumulated mutations on the second chromosome and estimates the rate of increase of variation and covariation in metabolic characters. Amounts of stored triacylglycerol and glycogen and the activities of a series of 12 metabolic enzymes were assayed in a subset of lines at generations 0, 11, 22, 33 and 44. Analyses of the rate of increase in the among-line variance in each trait allowed estimation of V(m)/V(e), the ratio of among-line variance added per generation to the environmental variance. Values of V(m)/V(e) for the second chromosome ranged from 0.0004 to 0.0289 per generation. Six of the 16 characters showed significant departure from a normal distribution, and several lines exhibited large changes in more than one character. The covariance of pairs of traits also was partitioned into a within-line component (environmental covariance, Cov(e)) and an among-line component (mutational covariance, Cov(m)). Both variances and covariance among lines increased over time, as assessed by linear regression, whereas environmental covariance showed no such trend. Results indicate that the quantitative genetic parameters describing the variation in metabolic traits are similar to those of other continuous characters.

Documentos Relacionados